

National Institute of Environmental Health Sciences Your Environment. Your Health.

PHTHALATE EXPOSURE AND PRETERM BIRTH: RECENT FINDINGS AND FUTURE DIRECTIONS

Kelly K. Ferguson Tenure track investigator Epidemiology Branch National Institute of Environmental Health Sciences

My overarching research objective is to improve the understanding of how the environment impacts pregnancy and childhood health.

ENVIRONMENT \longrightarrow MECHANISMS \longrightarrow PREGNANCY \longrightarrow CHILD HEALTH

OVERVIEW

My overarching research objective is to improve the understanding of how the environment impacts pregnancy and childhood health.

PHTHALATES → MECHANISMS → PRETERM BIRTH → CHILD HEALTH

PHTHALATE EXPOSURE

Environmental exposure sources

Personal care products Vinyl plastics Food and beverage Absorption and metabolism

Ingestion Dermal absorption Inhalation

Associated health outcomes

Hormone disruption Infant development Birth outcomes

PHTHALATE EXPOSURE AND PRETERM BIRTH

Figure 1. Odds of Preterm Birth and 95% CI Levels by Quartile of Average Phthalate Metabolite Level Measured During Pregnancy

- LIFECODES birth cohort
- N=130 cases of preterm birth, N=352 controls
- Urinary phthalate metabolites measured at 4 study visits
- DEHP and DBP metabolites associated with preterm

Ferguson et al. 2014, JAMA Pediatrics

PHTHALATE EXPOSURE AND PRETERM BIRTH

Figure 2. Odds of Spontaneous Preterm Birth and 95% CI Levels by Quartile of Average Phthalate Metabolite Level Measured During Pregnancy

 Greater effect estimates observed for spontaneous preterm birth alone

Ferguson et al. 2014, JAMA Pediatrics

Do these associations hold in other study populations? What risk factors make pregnant women more vulnerable to phthalate exposure?

PHTHALATES AND PRETERM BIRTH IN OTHER STUDIES

Reference	N (preterm)	Urine time points (weeks)	+ Gestational age	- Gestational age
Bloom 2019	319 (28)	18-22		
Huang 2018	106	delivery	MBzP, DEHP metabolites	
Casas 2016	391	12, 32		
Polanska 2016	165	30-34		MEP
Shoaff 2016	368	16, 26	MBP, MCPP	
Watkins 2016	68 (2)	8-14, delivery		∑DBP (females only)
Weinberger 2014	72 (7)	Not provided		DEHP metabolites
Suzuki 2010	149 (2)	9-40		
Adibi 2009	283	28	DEHP metabolites	
Meeker 2009	60 (30)	3 rd trimester		DEHP metabolites, MBP, MCPP
Whyatt 2009	331	3 rd trimester		DEHP metabolites
Wolff 2008	382	25-40	∑Low-MWP, DEHP metabolites	
	N < 400 preterm ≤ 30	2 urine samples max	Mos	tly null dings

PROTECT BIRTH COHORT

- Puerto Rico Testsite for Exploring Contamination Threats (PI: Alshawabkeh)
- Recruitment at 2 hospitals and 5 clinics in the Northern Karst region of Puerto Rico since 2011
- Restricted to women without medical complications
- Urinary phthalate metabolites from three study visits
- N=100 cases of preterm birth, N=971 term

AVERAGE ASSOCIATIONS WITH PRETERM BIRTH

Models adjusted for maternal age and education level

	Odds Ratio (95% CI) of preterm birth	
n (preterm, term)	100, 971	
MEP	0.98 (0.73, 1.32)	
MBP	1.42 (1.07, 1.88)	
MBzP	1.09 (0.84, 1.42)	
MiBP	1.32 (1.02, 1.71)	
∑DEHP	0.92 (0.69, 1.22)	
MCPP	1.18 (0.92, 1.51)	
MCOP	1.08 (0.83, 1.41)	
MCNP	1.14 (0.88, 1.47)	
n (preterm, term)	75, 738	
MHBP	1.33 (0.98, 1.81)	
MHiBP	1.44 (1.04, 2.01)	
n (preterm, term)	38, 381	
MECPTP	0.65 (0.41, 1.04)	
MEHHTP	0.70 (0.44, 1.11)	
MONP	0.89 (0.58, 1.36)	

AVERAGE ASSOCIATIONS WITH PRETERM BIRTH

- Models adjusted for maternal age and education level
- DBP and DiBP metabolites associated
 with increased odds of preterm birth

	Odds Ratio (95% CI) of preterm birth	
n (preterm, term)	100, 971	
MEP	0.98 (0.73, 1.32)	
MBP	1.42 (1.07, 1.88)	
MBzP	1.09 (0.84, 1.42)	
MiBP	1.32 (1.02, 1.71)	
∑DEHP	0.92 (0.69, 1.22)	
MCPP	1.18 (0.92, 1.51)	
MCOP	1.08 (0.83, 1.41)	
MCNP	1.14 (0.88, 1.47)	
n (preterm, term)	75, 738	
МНВР	1.33 (0.98, 1.81)	
MHiBP	1.44 (1.04, 2.01)	
n (preterm, term)	38, 381	
MECPTP	0.65 (0.41, 1.04)	
MEHHTP	0.70 (0.44, 1.11)	
MONP	0.89 (0.58, 1.36)	

AVERAGE ASSOCIATIONS WITH PRETERM BIRTH

- Models adjusted for maternal age and education level
- DBP and DiBP metabolites associated with increased odds of preterm birth
- No association between DEHP metabolites and preterm birth

	Odds Ratio (95% CI) of preterm birth		
n (preterm, term)	100, 971		
MEP	0.98 (0.73, 1.32)		
MBP	1.42 (1.07, 1.88)		
MBzP	1.09 (0.84, 1.42)		
MiBP	1.32 (1.02, 1.71)		
∑DEHP	0.92 (0.69, 1.22)		
MCPP	1.18 (0.92, 1.51)		
MCOP	1.08 (0.83, 1.41)		
MCNP	1.14 (0.88, 1.47)		
n (preterm, term)	75, 738		
MHBP	1.33 (0.98, 1.81)		
MHiBP	1.44 (1.04, 2.01)		
n (preterm, term)	38, 381		
MECPTP	0.65 (0.41, 1.04)		
MEHHTP	0.70 (0.44, 1.11)		
MONP	0.89 (0.58, 1.36)		

Do these associations hold in other study populations? What risk factors make pregnant women more vulnerable to phthalate exposure?

Do these associations hold in other study populations?

Not consistently; but in recent data from a large cohort YES for DBP and DiBP metabolites What risk factors make pregnant women more vulnerable to phthalate exposure?

Do these associations hold in other study populations?

Not consistently; but in recent data from a large cohort YES for DBP metabolites What risk factors make pregnant women more vulnerable to phthalate exposure?

The Infant Development and the Environment Study (TIDES)

Collaborators: Shanna Swan, Sheela Sathyanarayana, Emily Barrett, Ruby Nguyen, Nicole Bush

N=57 preterm, N=625 term for present analysis

PHTHALATE ASSOCIATIONS WITH PRETERM BIRTH

	Average
n (term, preterm)	625, 57
MEP	1.12 (0.90, 1.41)
MBP	1.32 (0.93, 1.89)
MBzP	1.06 (0.80, 1.41)
MiBP	1.28 (0.86, 1.91)
ΣDEHP	1.33 (0.87, 2.06)
МСРР	1.07 (0.82, 1.39)
MCOP	1.07 (0.83, 1.40)
MCNP	1.17 (0.85, 1.61)

 Associations were imprecise due to small numbers of preterm births

PHTHALATE ASSOCIATIONS WITH PRETERM BIRTH

	Average	
n (term, preterm)	625, 57	
MEP	1.12 (0.90, 1.41)	
МВР	1.32 (0.93, 1.89)	
MBzP	1.06 (0.80, 1.41)	
MiBP	1.28 (0.86, 1.91)	
ΣDEHP	1.33 (0.87, 2.06)	
MCPP	1.07 (0.82, 1.39)	
МСОР	1.07 (0.83, 1.40)	
MCNP	1.17 (0.85, 1.61)	

- Associations were imprecise due to small numbers of preterm births
- Average MBP, MiBP and Σ DEHP associated with increased OR of preterm

STRESSFUL LIFE EVENTS IN PREGNANCY

- Assessed via questionnaire at each study visit to determine whether participants experienced SLEs during each trimester
- Summarized as "Any SLE" vs. "No SLE" occurring during pregnancy
- Logistic regression models of phthalates and PTB were stratified by this binary variable

RESULTS FROM STRATIFIED MODELS

 In general, OR from women experiencing stressful life events in pregnancy were higher than OR from women experiencing no stressful life events

RESULTS FROM STRATIFIED MODELS

- In general, OR from women experiencing stressful life events in pregnancy were higher than OR from women experiencing no stressful life events
- Test for interaction showed that difference between groups was significant for ΣDEHP metabolites and MCNP

Do these associations hold in other study populations?

Not consistently; but in recent data from a large cohort YES for DBP metabolites What risk factors make pregnant women more vulnerable to phthalate exposure?

Do these associations hold in other study populations?

Not consistently; but in recent data from a large cohort YES for DBP metabolites What risk factors make pregnant women more vulnerable to phthalate exposure?

Simultaneous exposure to psychosocial stress in pregnancy

Do these associations hold in other study populations?

Not consistently; but in recent data from a large cohort YES for DBP metabolites What risk factors make pregnant women more vulnerable to phthalate exposure?

Simultaneous exposure to psychosocial stress in pregnancy

POOLED STUDY OF PHTHALATES AND PRETERM BIRTH

Study cohort	N
PROTECT	1101
TIDES	779
LIFECODES	480
Healthy Start	444
CHAMACOS	429
CCCEH	389
HOME	389
EARTH	385
MSSM	362
MUSC	318
SFF	294
MARBLES	190
HEBC	190
EPS	126
MMP	68
Rutgers	52
Total	5,996

Will utilize US studies with prenatal measurements of one or more urinary phthalate metabolites (16 total)

Research questions:

- What are the specific windows of vulnerability?
- Are there differences by race/ethnicity?
- Are there threshold effects?
- Is there a cumulative effect of exposure?

Current status: Data transfer agreements complete, data transferred to NIEHS, variables harmonized, analysis underway!

ACKNOWLEDGEMENTS

LIFECODES cohort

Thomas McElrath, Brigham and Women's Hospital Dave Cantonwine, Brigham and Women's Hospital John Meeker, University of Michigan Bhramar Mukherjee, University of Michigan

PROTECT cohort

Emma Rosen, NIEHS and University of North Carolina John Meeker, University of Michigan Akram Alshawabkeh, Northeastern University José Cordero, University of Georgia

TIDES cohort

Shanna Swan, Icahn School of Medicine at Mount Sinai Sheela Sathyanarayana, Seattle Children's Hospital Emily Barrett, Rutgers University Ruby Nguyen, University of Minnesota Nicole Bush, University of California San Francisco

Pooled Study of Phthalates and Preterm Birth

Cohort PIs contributing data!!! Barrett Welch, NIEHS Kate Christenbury, DHL Corporation Alex Keil, University of North Carolina Jessie Buckley, Johns Hopkins Stephanie Engel, University of North Carolina Antonia Calafat, CDC

Funding from the Intramural and Extramural research programs at NIEHS

